Modelos de IA generativa: Tokens, limitações e soluções em potencial

Fonte: CenárioMT

SpreadsheetLLM: Microsoft inicia uma revolução na análise de dados

Modelos de IA Generativa, como o GPT-4, revolucionaram a forma como processamos e geramos texto. No entanto, esses modelos apresentam limitações significativas, muitas das quais podem ser atribuídas à forma como eles dividem o texto em partes menores chamadas “tokens”.

Imagine um modelo de IA que precisa ler e entender um livro. Seria muito difícil para o modelo processar o livro inteiro de uma só vez, como se fosse um grande bloco de texto. É aí que os tokens entram em ação, imagine que o livro seja dividido em pequenos pedaços, como capítulos, parágrafos e frases. Cada um desses pedaços menores pode ser chamado de “token”. Os tokens são como as “palavras” que o modelo de IA usa para entender o livro.

Problemas com Tokens:

  • Viés: Tokens podem ter espaçamento inconsistente ou letras maiúsculas/minúsculas, levando a interpretações erradas pelo modelo. Por exemplo, “era uma vez” e “era uma ” podem ser tokenizados de forma diferente, alterando o significado.
  • Desigualdade linguística: Idiomas como chinês ou japonês não usam espaços para separar palavras, o que confunde os tokenizadores. Isso leva a modelos mais lentos e menos precisos para esses idiomas.
  • Matemática: Tokens não capturam a relação entre números, tornando os modelos ruins em tarefas matemáticas. Por exemplo, “380” pode ser tokenizado como um único token, enquanto “381” pode ser dividido em dois, confundindo o modelo.

Impacto das Limitações:

  • Interpretação incorreta: Modelos podem gerar resultados incorretos ou sem sentido devido à má interpretação do texto.
  • Desempenho desigual: Modelos podem ter um desempenho inferior em idiomas diferentes do inglês, especialmente em tarefas complexas como tradução ou escrita criativa.
  • Precisão matemática limitada: Modelos podem falhar em tarefas matemáticas básicas devido à incapacidade de entender a relação entre números.

Soluções em Potencial:

Modelos de IA generativa: Tokens, limitações e soluções em potencial
Dall-E 3
  • Modelos sem tokenização ou híbridos: Modelos como o MambaByte processam texto bruto, sem tokenização, mas ainda estão em desenvolvimento inicial.
  • Novas arquiteturas: Novas arquiteturas de IA podem ser necessárias para superar as limitações da tokenização, permitindo que os modelos processem texto de forma mais natural e eficiente.

A tokenização é um obstáculo significativo para o avanço da IA Generativa. Pesquisas para soluções alternativas, como modelos sem tokenização ou novas arquiteturas, estão em andamento. O futuro da IA Generativa dependerá da capacidade de superar essas limitações e desenvolver modelos mais robustos, precisos e equitativos.

Um criador de conteúdo e entusiasta de jogos e tecnologia, trabalha como redator, analista de TI e game designer no tempo livre.